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optimal gain matrix for large time for the fractional state-space

system.

Unfortunately, in the general time case, no Riccati equation

can be derived because of coupling between the optimal gain matrix

and the state vector due , o fractional derivatives of the control

vector, Only when am atrices are asymptotically constant fef-

time la. and time is large, do they uncouple.

The theory is illustrated by two examples. A simply-supported

viscoelastic beam with controllers illustrates the solution process

in Example 1. The beam example incorporates the fractional

calculus viscoelastic behavior in a structure element, while an

axially deforming rod in Example 2 incorporates the behavior through

a viscoelastic shear force applied at a node by a damping pad. The

example equations of motion are numerically solved using the

commercially-available control analysis software package called

MATRIXx.
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Abstract

The objective of this thesis is to develop a control law for

structures incorporating both passive damping via viscoelastic

materials modelled by a fractional calculus stress-strain law and

active damping by applied forces and torques. To achieve this,

quadratic optimal control theory is modified to accomudate systems

with fractional derivatives in the state vector. Specifically, linear

regulator theory is modified.

The approach requires expanding the structure's equation of

motion into a fractional state-space system of order 1/n, where n is

an integer based on the viscoelastic damping material constitutive

law. This approach restricts the theory to materials which have

rational, fractional derivatives in their constitutive laws. An

equivalent first-order system is then formed and used to derive the

opiirnal control theory in linear regulator problems. The quadratic

performance index used in linear regulator theory is used, and

equations similar to those derived for linear regulator problems

using first-order systems are developed. The optimal control law is

asymptotically linear feedback of the state vector for time large.

An equation which defines the optimal gain matrix for the feedback

is derived and is asymptotically an algebraic Riccati equation for

long time and for gain matrices which are asymptotically constant

for large time. Since an algebraic Riccati equation can be defined,

current sqolving routines can determine the asymptotically constant

vii01



optimal gain matrix for large time for the fractional state-space
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QUADRATIC OPTIMAL CONTROL THEORY FOR VISCOELASTICALLY
DAMPED STRUCTURES USING A FRACTIONAL DERIVATIVE

VISCOELASTICITY MODEL

.Introduction

Control of large flexible structures is currently of interest

because of, in part, the possible use of large space structures in the

* Strategic Defense Initiative. Fine pointing and position

requirements drive the need for fast, accurate control of a

structure's state. Primary emphasis in the past has been on purely

* elastic structures controlled by various applied forces and torques

in feedback. Unfortunately, large flexible structures have large

numbers of vibrational modes at low frequencies which are easy to

* excite. The modes are also very closely spaced in frequency, so that

control of one often excites one or more other close modes. Thus,

control accuracy is degraded. The incorporation of viscoelastic

* materials into structures holds promise to improve active control

performance considerably.

One primary reason that viscoelastic materials have not been

* readily included is that classical models of viscoelastic behavior

are complex. The classical stress-strain law uses a sum of integer

order, ordinary derivatives to describe the weak frequency

* dependence of the viscoelastic behavior:

1



m a P ajE

a + 2: bi- E + , aj-
i=1 at j=1 ot j

where a is stress, P is strain, aj and bi are constants, and m and p are

integers. More or less derivatives are employed to fine tune the

model to the precision required. High precision requires a large

number of derivatives, implying also a large number of parameters

(aj and bi). The large number of derivatives also expands the state

vector which must be observed and fed back for control. This

resulting calculations with large matrices are not condusive to fast

response systems.

An alternate viscoelastic model uses fractional derivatives of

time describe the material response. The fractional derivative of

g(t) of order a, where a is taken to be a real fraction, is defined as

dag(t) 1 d (t -r) dc(
dta r(1 -a)dt fo a 1 O_!<cc< 11)

Its Laplace transform is [sG(s)-g(t=O)]/sl -a, where s is the Laplace

variable and the capital letter indicates the Laplace transform of

g(t). The tractional calculus model of the constitutive law is

a + b - = + a-
(2)

For this thesis b is chosen to be equal to zero; and a = m/n, where m

and n are integers. Such a model is commonly called a "power-law"

constitutive model (5). Bagley and Torvik (3:918) have shown that

this model is accurate over four or more decades in frequency for

over 130 viscoelastic materials. The virtue of this model is that it

2



requires only four parameters. However, it too requires expanding

the state vector to include fractional derivatives, but the fractional

derivatives are lower order than those used in the classical model.

The effects of noise and uncertainities are not as dramatically

amplified through the lower order diferentiation. Consequently, the

fractional calculus model appears to be a better choice to

incorporate into a control law.

The objective of this thesis is to attempt to incorporate the

fractional calculus viscoelastic model into optimal control theory,

such that an optimal control law for an active controller, which is

optimal in a sense to be described, can account for and complement

passive damping. Current state-space optimal control theory uses a

performance index to optimize. Indices with quadratic terms are

commonly used because energy is described by the square of the

velocity and displacement. This is quadratic control theory. A

special case, linear regulator theory, assumes a quadratic form for

the optimal value of the performance index, J, i.e. J* = 1/2 V.T k ,

where V is the state vector, K is a matrix of gains, and the asterisk

indicates an optimal value. In this special case quadratic control

theory produces optimal control as linear feedback of the state

vector. Because the feedback is linear, the analysis and its

* implementation is relatively straightforward. Therefore, this work

focuses on deriving the equations in the linear regulator theory for a

system using fractional state-space.

The current linear regulator equations are derived by the

application of a first-order state-space system of the form:

3



• '(tx = +a (t) (3)

where

x (t) = state vector
(t) = first derivative of the state vector with respect to time

u( t) = vector of control forces and torques
A(t), B(t) = matrices of functions

* The approach taken in this thesis is to formulate a first-order

system which is based on an expanded equation of motion of a

structure (3:921-922) and derive the equations for the linear

* regulator theory. The expanded equation of motion is developed from

converting a structure's finite element model into a state-space

system. A finite element model which includes viscoelastic

* materials described by a fractional calculus model will generate a

state vector which includes both integer and fractional derivatives.

The general form of a system created by expanding a structure's

equation of motion is a system of fractional order less than one and

is

1 hIn-Dtn x (t) = A'(t) X (t) + B (t) U_( t) (4)

i n

where Dt is a fractional differential operator of order 1/n

operating on the state vector in which n is the positive denominator

* integer of the material's rational fraction in the fractional

derivative model of the material's viscoelastic behavior. The state

vector includes fractional derivatives. It is shown herein that this

approach leads to a simple control law.

4



For clarity in this thesis the term "classical" will refer to use

of a first-order system instead of a system of order -1/n. For

examole. the "classical" eigenvalue problem refers to the eigenvalug

problem which uses a first-order system.
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In the last ten years there has been a lot of work on the

*fractional calculus model of viscoelasticity. Bagley and Torvik

(1,2,3,4,15) have published a number of papers on the model's use

and accuracy. Bagley's PhD dissertation (1) details the calculation

* of material response for structures using the 'fractional calculus

model. His research shows that the model predicts both oscillatory

and non-oscillatory relaxation motion for viscoelastic materials

*(1:92-104). This latter motion is due to the characteristic

relaxation which deformed viscoelastic materials exhibit in

returning to a less stressed state over time. For example, the

Sinternal structure of a rubber band which has been left stretched for

a long time will slowly adjust, such that the stress is relieved.

This has been observed to be closely modelled by power-law

,phenomenon over finite observation times (20:681). Furthermore,

Bagley (3:918) has experimentally determined the model parameters

for over 130 materials and has found the model accurate over four or

more decades in frequency. In their 1985 paper (3:921-923) Bagley

and Torvik also illustrated a method to convert a finite element

equation of motion for a structure incorporating elements using a

model of order a, where a = mss (i, n = integers), into a fractional

siate-space system of order 1/n. This forms the basis for building

the first-order system required to develop the control theory.

6
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Thus far, Skaar, Michel, and Miller (24:348) and Hannsgen,

Renardy, and Wheeler (12:32-34) have investigated system control

using the fractional calculus model. Neither use optimal control

theory to develop an optimal control law. Both assume feedback

forms and analyze the effects. The former restrict the feedback

control law to a fractional derivative of the same order as the

constitutive law, Pu(a)=Pe(e) , where Pc and P. are differential

operators, P,=1 + aav/atv and PE=E + bav/Dtv, E is Young's modulus, a,

b, and v are constants, and v is a rational fraction. The work focuses

on the use of the root locus technique to analyze the system

response. They derived the transfer function in terms of a new

parameter, h, which is defined in the Laplace domain by

h 2 = s 2 p,(s)/P,(S), where s is the Laplace variable. The poles of the

transfer function, therefore, are values of h instead of s, the Laplace

variable, and, as such, cannot be used directly to find the response.

The poles must be mapped back to values of s through the definition

of h, before the response can be calculated. A similar situation

arises in the application of the control theory developed in this

thesis and is demonstrated in the example problems. Furthermore,

Skaar also noted that general stability criteria can be defined in the

complex h-plane, so that the poles could be used directly to assess

general characteristics of the system stability. Specificly, Skaar

maps the imaginary axis from the complex s-plane to the h-plane

and proves that all poles must lie to the left of this mapped line to

have a stable system. Similar criteria are shown in this thesis.

7



In the latter work referred to above, Hannsgen, Renardy, and

Wheeler investigate the response of a viscoelastic torsional rod

subjected to linear feedback of the angular displacement. In a

special case, they use the fractional derivative model for the

constitutive law of the rod. High and low modes of vibration

experienced different effects as control gain varies from low to

high for this constitutive law. Specifically, for low gains the low

frequency modes are least damped; but, as gain increases, higher

frequency modes become the least stable. Optimal gain is defined as

that gain which makes the poles of the least stablo mode most

stable compared to other gain value least stable pole locations, i.e.

stability is classified by the least stable mode's most-negative-real

location over the range of gains investigated. They define optimum

is when it is most stable. This is a performance index, which

optimizes a predetermined control law instead of creating one.

8



II. Theory

Performance Index

0 Optimization requires some measure of performance to

minimize or maximize. This performance index (PI) contains

expressions which represent important system characteristics, e.g.

kinetic energy, and which are written in terms of system and control

law parameters. Furthermore, these expressions are weighted, so

that their effect on the overall performance index can be varied to

* emphasize certain parameters to find some "best" curnbination.

To create a performance index one must identify the important

system characteristics and their representations of the system of

0 interest. For this thesis that system is a state-space system of

order 1/n with constant. real coefficient matrices, A" and P

1 /n -Dt/ x (t) -- A" _X(t) + B U(t (5)

where iX(t) is the state vector, which includes both integer and

fractional derivatives of position, and i(t) is the c.ontrol vector. The

matrices A and B must be constant and real, because the system

represents a finite element model of a structure. The structure

equation of motion has constant, real coefficients. When the
0 equation is expanded into a state-space system, matrices A and

are formed using these constant, real coefficients.

Structures are normally characterized by the amount of energy

which the configuration, including control inputs, stores at any point

0 9



of time. Consequently, a performance index based on energy would

be appropriate. Current optimal linear control theory gives a

starting point. Kirk (15:91) uses a general PI of the following form

for first-order linear systems of continuous linear regulator

problems:

tf

1 =.-T _~+1 f-T-- T- -T_J=x (tf) Hx(tf)+ f (x Qx + u R u)dt
0 to (6)

where J is the performance index, x(t) is the state vector, U(t) is

the control vector, and H, Q, and R are real, symmetric weighting

matrices, in which R is positive definite and H and 0 are positive

semi-definite. Values of H, Q, and R are chosen for an optimization;

consequently, each set of weighting matrices defines an optimized

value of the performance index, J. For this thesis H, Q, and R are

chosen to be constant matrices. Since the state vector contains

both position and its first derivative, 1/2 VT Qi includes measures

for both the strain and kinetic energies of the structure. Similarly,

1/2 u R u is a measure of energy in the controller. The expression

with H merely represents the energy in the desired final state.

Although the extra fractional states are now included in the system,

the classical definitions of strain and kinetic energy are assumed to

still be valid. Furthermore, the extra fractional states are not

known to represent any energy storage system. That is, the

structure stored energy is still described by kinetic and strain

energies. Consequently, a quadratic performance index should still

be suitable for optimizing the 1/nth-order system. Weighting

0 10



matrices H and 6, however, must be chosen such that the fractional
states have zero weight. This eliminates these states from the

index.

For the problems of interest, a slightly modified form of this

PI is desireable. For simplicity the transient solution of the state

vector is not addressed, and only the steady-state solution is

sought. Therefore, let time be large and let tf tend to infinity.

Furthermore, when the desired final state is static equilibrium of

the structure, 1/2 xT(t) H ;(t ) is assumed to be equal to zero.

Therefore, the actual performance index used herein to optimize

fractional-order systems of the form of Eq (5) is

j r*~- -T- -
j= iJ(xTQx + u R u)dt (7)

Modiied Hamilton-Jacobi-Bellman Equation and Optimal Control Law

Kirk (15:86-90) thoroughly discusses the optimization of his

* general PI, which is a more general form of the chosen perfnrmance

index,

•J( ( t) , t U_(r)) = h(_x(t) t) + g (;(c), UJ(rc), ) dc

t<!tff (8)

for a general first-order 'system of the form

X (t) = a (x (t), u ( t), t)

If the 1/nth-order system can be posed as a first-order system, then

the optimization process for our performance index has already been

* outlined by Kirk. The development can be followed, and equations

* 11



pertaining to the system of order 1/n can be found. The linear

regulator problem is specificly followed because it uses the same

performance index as has been chosen for this thesis and results in

linear feeback of the state matrix. It will be shown that the

modified control law will also be linear or asymptotically linear for

steady-state (t -- oo).

Once a structure has been built, the on!y way to affect its

stability is through applying some control force or torque, i(t). The

state vector, 5 (t), is just a statement of the location and motion of

the structure's parts, i.e. it is a description of the state of the

structure. The control J(t) is what is being implemented to cause a

change in the state of the structure. It is also the quantity for

which the physical control system is going to be designed.

Therefore, the control law which minimizes the performance index

is what is being sought. Consequently, the performance index is

minimized with respect to the control, U(t). The PI is minimized,

because the control objective is minimum structural motion and

minimum energy used by the controllers, all of which is

characterized by minimum energy in the system. The control i(t)

which minimizes the index is designated the optimal control, j*(t).

The relation between J*(t) and its variables (e.g. x(t) and t) is called

the optimal control law. Therefore, the basic concept behind the

development of this optimal control theory for systems of order 1/n

is the determination of an optimal control law by minimization of

the performance index with respect to the control, J(t):

0 12



* min If '1
0 x()t -u ~ 't) f + g( '(r), U(,c), ) dr

•= tf
= h(iX(t), ti)+ g(3(t), U-* r), r) dt

where J (V(t),t) is the optimal performance index function. It is no

longer a function of d(t), since the minimum over all admissible

controls has been taken; i.e. J specifies 17(t) as the optimal

control.

Eq (9) defines J*(-X(t),t). However, the equation includes two

unknown functions, because the optimal performance index function

is unknown as well as the optimal control. There is, thus far, one

equation for two unknowns; consequently, an expression for one of

the unknowns must be assumed. A function is chosen for J*(x'(t),t) to

emphasize system characteristics whcih are believed to be

important, and the corresponding J.*(t) is found.

If, instead, the minimization is performed with J (x(t),t)

unspecified, the optimal control will be a function of J (x(t),t), V(t),

and t. Depending on its form, J (-x(t),t) may have one or more

constants of proportionality between itself and its variables;

therefore, one or more equations are still necessary to completely

describe the optimal control. If a simple form for the optimal index

function is assumed, e.g. J (V(t),t) = 1/2 iK(t), then one equation

for K(t) and one for d*(t), including K(t) and -x(t), are required. This

is the case for th9 linear regulator problem. K(t) is often called the

optimal "gain" matrix, because it is the matrix of gains, i.e.

0 13



amplification factors applied to a feedback state, for the assumed

optimal performance index function. Both equations are found

through the minimization of the index as shown in the next section.

Kirk illustrates the optimization of a general performance

index with the general first-order system, Eq (9). If there is an

equivalent first-order system for the 1/nth-order system, it can be

used the general equations that result from the optimization. Since

the optimization is simple and Kirk (15:86-87) describes it well, it

is not repeated here. Instead, this thesis will start from the

resulting equation, the Hamilton-Jacobi-Bellman equation, and will

detail the modification of the linear regulator theory equations for a

system of order 1/n.

Modified Hamilton-Jacobi-Bellman Eguation and Optimal Control Law

Kirk's development leads to the important Hamilton-Jacobi-

Bellman (H-J-B) equation, which must be satisfied by the optimal PI,

J* (X (t), t)

0 (x'(t), t) +H (_'(t), u*(-x(t),Jx, t),Jx, t) (10)

where the assumed final value is J(i(t), tf) = 0 and H, called the

Hamiltonian, is

H ( _X(t, _( t), J , t) =g( _'(t),G( t), t)+J ( (t), t)[-a ( V(t), j( t), t) ( )

where - ( ;(t), ( t), t) is a first-order system. The Hamiltonian is

minimized by the optimal control, i*(t):

14



• ~~H (rDt) i' I, n) ,t=ri H (_ ( t),uj(tQ, Jx, D)
u( t) (11a)

Eq(10) and Eq (11a) are important, because the minimization of the

0 Hamiltonian yields the optimal control law and the H-J-B equation

yields an equation for the optimal gain matrix in the performance

index. Hence, these are the two equations sought in the previous

section to describe the optimal control law.

The H-J-B equation is the relation that defines the general

optimal performance index, J*(x(t), t). However, as noted earlier, a

form must be assumed for J*(x(t), t), e.g. 1/2 xT K(t) x where K(t) is

the optimal gain matrix. If the PI is chosen appropriately, the H-J-B

equation will give an equation for K(t). Kirk pursues this approach.

First, he minimizes the Hamiltonian with respect to a general J and

finds that the optimal control law which minimizes it is given by

linear feedback of the partial derivative of J with respect to ;(t).

Thus, the linear regulator problem is defined. If J*(x(t), t) is chosen

-Tto be equal to 1/2 x K(t) x, the optimal control is linear feedback

of the state vector. Using this optimal control and PI, the H-J-B

equation leads to a nonlinear ordinary differential equation for the

optimal gain matrix, K(t). For the linear regulator problem this

equation is a Riccati equation. If the 1/nth-order system could be

posed as a first-order system, then a development parallel to Kirk's

can be used to define modified versions of the H-J-B equation,

optimal control law, and Riccati equation. Therefore, the problem

reduces to writing the 1/nth-order system in the form of a first-

0 15



order system. Then substitute this expression and the index form,

Eq (6), chosen for this thesis, into the general Riccati and

Hamiltonian equations, and complete the minimization for this

specific linear regulator problem.

The first-order system can simply be rewritten recursively in

terms of the derivative of order 1/n which was defined in Eq (1):

Dlt D /n ... (Dl /n() (n times) (12)

Successive replacement of Dt x by A V(t) + B ( t), as in Eq (4),

and application of the next derivative operator yields a general

first-order system of the form:

n + " 1 ,+ i " - 461 /n -n-36 -- + +-6 n - 2 )/n -
x=x +A+ BDt u +A Bt +.+ABD u

(Bn- 1)/n-

Dt

n- 1

; n_ + ; n-p-l D6t/n-

p-O (13)

where Do u( t) = u( t). This is illustrated by an example of a

1/3-order system with constant matrices A and B:

D t  [D 1 3 (D' /3()]

D' D' V ( ( t) + B' -( t)BV (t
'D;3 D' 3i(t) +BD' ( t)

x'!D t3 'l 3 t) + 6 D ' ( u t)

x D' ( x +B u + D t (14.a-g)
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1D'- 1/3-U +6 t/3.Ux A Dt x(t) + ) u(t) + D',(t)
x-- (AK'(t)+BJ(t))+AKBD (t) +BD~t (t)

x= A'3x'(t) + BJ(t)+ABDt J(t) + 3 (t)

* The resulting expression can be used with the H-J-B equation to

develop the optimal control law and a modified Riccati equation

governing the gain K(t) in the 1/nth order system. An important

point is that this development is restricted to systems of rational

1/nth-order since n must be an integer to apply the derivative n

times in the recursive relation for x.

The first step in using this equivalent form in the H-J-B

equation is minimization of the Hamiltonian with respect to the

control vector; a necessary condition is vanishing of the first
• oH a 2 H

variation: a- = 0 If the second variation, -2 , is a positive-

definite quadratic form, the control vector which solves this is the

• desired optimal control vector. The minimum value of H is found by

evaluating it at the optimal control vector.

Using the equivalent first-order system, Eq (13), the

Hamiltonian becomes

H : - T a + 1 -'T + * J T ; n , + n - -l/ n -

* --0 (15)

To find the first variation with respect to U, evaluate H at U + h
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uH 1  T ( + )Ti( + )+ T  n .Pn-1 lj/np + 1) "p0i + + 5XI Aplg n(ua +h)

2 2 p--]

Simplify, using I hT = 1iTRh (which is a scalar); the result is
2 2

H ~ D D2J+~~h HH-= H (j) + h- -h

a6 2 (16a)
where

H. (d) TE , +1 _L T - .!x n + , n-p-l 1 /n-

2 2-- (16b)
-,T n- 1

DH (-) -TZ ' I Jx ;, n-p-l &~/n- '

jp --o ( 1 6c)

a-.2 2
(16d)

This is an the expansion of H evaluated at du + h. The first variation,

or derivative, of H operating on h corresponds to the terms linear in

h . The second variation corresponds to the terms quadratic in h

With the requirement that R be positive definite, the second

variation is always positive. Therefore, a solution of the first

variation will give a minimum value.

The first variation, Eq (16c), operating on h must equal zero

for any admissible h
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-T _,T n-1 _ - on

u Rh + J., XA Bd h =0
p--o (17)

where admissible controls and variations are taken to be functions

Sh( t) which are continuous for 0 < t < oo. Since Eq (17) must be true

for all admissible variations, h(t) , it must, in particular, be true for

the admissible variation

h R(t) = H(t) 1 (18)

where H(t) is the Heaviside step function which is zero for t < 0 and

1 for t > 0; the vector 1 is the constant vector having the value 1 for

all components. For this admissible variation, the fractional

derivative is

DF Ifl h(t)=d ,H(t)(= 1 H( __ H(t-)-p'n d

t (1 -p/ n) dtJ0 (9

* which yields

Dtn h(t)= Tpn (t) 1 (20)

• where

0, .t < 0
Tpn ( t) -- 1 , p =0, t> 0

* t-'p/ , p >0 , t> 0
S(1-p/ n) (21)

Using Eq (20) in Eq (17), the optimal control u must be
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u t) - T- .pnM)x(;(t), t)

p=0 (22)

Observe that the large-time behavior of u is

,(t)N _ -1 6T% 'n-l T* ( x ( t t ,t o 23

The small-time form of u includes singular factors through Tpn(t)

which must be dominated by appropriate behavior of J, for small

values of t, in order for u to be an admissible control. This

constraint on J will appear in initial conditions on the gains K

obtained from a Riccati equation.

The Riccati Equation for the Gains

The goal of this section is to derive the Riccati equation which

governs, for large time, the gain matrix, K(t), for linear regulator

* problems in which gains are asymptotically constant. Upon choosing

an appropriate form for the optimal PI and applying it to the control

law, Eq (22), the Riccati equation is derived with an application of

* the H-J-B equation. Using Eq (16b) in Eq (9), the H-J-B equation is

now

• d +1 T I -* T n-'n-1 -p-16/ n -
0 x U J 2 n I

2 2 P_0(4
p=Ou~ nPlp/..* (24)

Recall, linear state feedback is achieved if J is quadratic in 5.

Furthermore, it is logical that the PI may be related to the
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expressions representing the system characteristics of interest.

Therefore, it is commonly assumed that the PI takes the form

J*(x ( t), t) ; - T Kot -X
2 (25)

where K(t) is real, symmetric, and positive-definite. Then

ix 
(26)

and

2 (27)

Using Eq (26) in Eq (22), the optimal control law becomes

n- 1 T -niu -tT p A Tpn(t) K(t) _'(t)u (t) = -R X _pn.'-

p=O (28)

* (From this result, the large-time behavior of u can be viewed in

terms of the behavior of _X, since K is asymptotically constant.

Furthermore, the initial behavior of K can be ascertained to

* dominate the singular nature of Tpn(t).)

When Eq (27) and the optimal control, u , in Eq (28) are

inserted into the H-J-B equation, Eq (24), the result after

* simplification is

1 iT f '.- - -I A --+ l§ A -- )
I-^ K + K - BTpn(t) Y , Bq")TTqn(t) K + 2KA~
2 p-O q-O
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n-1 rnp1 pn[n-i1
- IT 2K B D,/n 'IBT( q n )T(t) K(t) i(t)
2 p O q .0 (2 9 )

At this point, we note that a commonly-employed technique saying

"if x i = 0 for any _X, then M =0" cannot be used since the

differential operator Dt/n operates on both xand K; they cannot be

separated in Eq (29) to use this argument to get an equation which

must satisfy. However, consideration of the individual terms

summed over p in the right side of Eq (29) reveals that, for gains K

which are asymptotically constant for large time, there are states,

*~ i(t), for which the leading order behavior of this sum is given by its

p=0 term. In effect, the fractional derivatives of order greater than

zero are subdominant to the undifferentiated (p=O) summation over

* q. Relying on "regularly-varying" function theory (Appendix A),

Warhola (27) illustrates states for which this is true, so that the

theory presented hereafter is not empty. Proceeding with this

* Eq (29) yields
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* I T + A K BTpn(t) -16T n-1 (+n-q-1 2 n
p=o q=o

iT~ ~ 2Z RA-§I §TX-- n(t) R x , t ---> 00
2 q=0 (30)

The leading order of the sum over q is clearly the zeroth term, so

IKT K + Q + K A 9TYBTp(t) (A Tq(t) K + 2KAJ X
p=O q=O

2 (31)

Now this must be true for all states, i(t), so

_: - , n +K An-p g'BTPn(t) ,BT (An-I l) Tqn(t) K 2KA n

p.0 q=0

R 2KA n-,B -T(An,)T K , t - oo(32)

Similar examination of the terms in the left side of Eq (32) reveals

that the p=q=0 term dominates for large time, at least for

* asymptotically constant gains, K, which have a regularly-varying

derivative, K. (In fact, the K term is subdominant to all terms with

p+q < n on the left side of Eq (32).) Thus,
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2k n-1 6 -l6T(n-1)T  K , t -- oo(2KA BR B~)K ,-400(33)

• In the limit as t -- oo , the algebraic Riccati equation governing the

steady-state. gains, K, is obtained as

* Q+2an _ k n-A16 -,T ( - 1)TK = 0 (34)

Now, the matrix KA can be split into its symmetric and anti-

symmetric parts

n I[Kan +2 (au n)T [an._ (ajn)T

2 2
Using the fact that the transpose of a scalar is itself, i.e.

T Ka x = xd( , ,x

then 2KA can be written as

2Kan = an + (an)T

Substituting Eq (35) into Eq (34) and, again, using the fact that the

transpose of a scalar is itself, the result is the final form for the

algebraic Riccati eauation governing the limit of steady-state

(asymptotically constant) gains. K. for a system of orderl/n

0 = QKAn+ (an)T - ,n-IIBT6A'n'I)TK

(36)
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It is important to note that the constant-K Riccati equation

for first-order systems is

0 K+C+ 1+("1 T - BF{BK(37)

* where

x(t) = A1 X(t) +B1 u(t) (38)

Consequently, the modified 1/nth-order system equation can be

* written as an equivalent first-order system equation, if

A= n (39)
B1 - 1 . (40)

* The significance of this result is that current algebraic

Riccati equation solving routines for first-order systems can be

used to solve the modified, constant-K, steady-state equation for

* 1/nth-order systems. The tools to do this analysis are already

available and in common use.
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Solution Process for System Response

Once K has been found by solving the Riccati equation (36), the

solution for the state vector, _X(t), can be completed. This solution

is typically called the response of a system, because the state

vector describes how a structure reponds to a given input. By

substitution of the steady-state optimal control expression,

Eq (29), into the system of order 1/n, Eq (5), the steady-state

system equation becomes

Dtn x ' . - 1 .; (41a)

The Laplace transform of Eq (41a), assuming zero initial conditions,

* is

Si InX(S)=9 n-l)Zk (S) (41b)

where s is the Laplace variable and capital letters on the vectors

indicate transforms. In the structure examples, the state vector is

actually a composite of fractional order derivatives of displacement

vectors, e.g.

Dt xl
x D2t(x)

Dt (x)
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where (x) is a vector of displacements. The solution technique is

discussed next In general terms and is illustrated in detail in the

example problems in Chapter 4.

If the system eigenvalues, X, are defined by X = s1/ n , then the

solution process is reduced to an eigenvalue problem, i.e. XX= Cx

where C is a real matrix for structures:

* XX(s) 6u[ 1(n1)k1~)(2

Insight to solving Eq (42) for the state vector response can be

gained by reviewing the eigenvalue problem of a first-order system.

In the classical first-order system eigenvalue problem

eigenvalues are defined in the Laplace domain by the relation CO = s

which results in the solution of the state vector as V= eo t

where e is a vector of coefficents and o is a complex number. The

vector e is called an eigenvector, and each eigenvalue defines one.

The complex plane in which the eigenvalues lie will be called the

sl-plane, where the superscript indicates the power of the Laplace

variable s in the definition of the eigenvalue. If Eq (42) were an

eigenvalue problem of a first-order system, by substitution of the

transform of the general solution of the state vector, Eq (42) can be

written as

o ( n1) T ? (43)
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where I is the identity matrix. If the eigenvector is not the trivial

solution, Eq (43) has a solution if and only if the determinant of the

matrix of coefficents of the eigenvector is zero (18:78).

S0= A-(44)

Eq (44) yields a polynomial equation in the eigenvalue X, and the

* roots of this polynomial are the eigenvalues. Because all

coefficients of the polynomial are real, the eigenvalues may include

real values or pairs of complex conjugate numbers. Once the

* eigenvalues are determined, the eigenvectors, ¢, can be determined

from Eq (43). The vectors are unique in that the ratio between any

two elements is constant, but the values are not unique (18:78). The

* ratio is dependent on the eigenvalue, but the values are arbitrary

because cO, where c is an arbitrary constant, is also a solution of

Eq (43). In typical equations of mtion for structures - hence 0, are

* displacements. Since only the ratio of elements in the eigenvector

is constant, the eigenvector represents relative displacements

between nodal ponts in the structure. If the eigenvector is real

* valued, this gives a shape of the structure. Consequently, the

eigenvector is called a mode shape, i.e. the shape of a mode of

motion. These modes are quantized in that they only occur in

* conjunction with specific eigenvalues. It can be shown that the

eigenvalues correspond to frequencies of vibration, if the motion is

oscillatory (complex eigenvalue), or reciprocals of time constants,

* if the motion is non-oscillatory (real eigenvalues) (18:78).
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Therefore, structures may vibrate in a specific shape at one of these

"natural" frequencies or have a specific shape as the motion decays

or grows with a specific time constant. Modes are named by the

type of motion and eigenvalue ranking, when eigenvalues are ordered

starting with the lowest value for that type, e.g. the second

vibrational mode corresponds to the next eigenvalue higher than the

lowest vibrational eigenvalue. If the eigenvector is complex, the

mode shape changes as time passes. Finally, the total structural

response may be expressed as a linear combination of responses due

to individual modes (19:164). The lowest modes have the greatest

influence because displacements, hence energy, are greater than the

higher numbered modes. Once eigenvalues and eigenvectors are

known in the classical eigenvalue problem, one can go directly to

response.

Consequently, eigenvalues, called poles in control analysis, and

eigenvectors are typically the focus in structural and control

analysis. Because the pole affects the exponent of the exponential

in the solution, x = e t  , its value determines stability, i.e.

bounded motion, of the response. If o is complex, the exponential

can be written as a product of two exponentials: one with a real

exponent and one with an imaginary exponent. The Euler formula

(17:584) sta.es that the latter can be written in terms of a real

cosine part and an imaginary sine part. Therefore, a complex pole

produces oscillatory response, in which the magnitude of the

imaginary coefficient of time, t, in the exponent is the frequency of

oscillation. Oscillatory motion is bounded, so it is the real
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component of the pole which must determine the boundedness of

motion. If the real part is positive, its exponential, which is the

amplitude of the oscillatory motion, grows without bound. If the

real part is negative or zero, the response is bounded, and the

system is stable. Therefore, pole location can give a general idea of

the respornse of the function, e.g. a pole in the second quadrant is

stable and produces oscillatory motion, and is a primary tool in

analysis of structural motion and control. The criteria that non-

positive real parts of poles produce bounded motion only applies

when the poles are expressed in this plane. Other criteria will be

derived for eigenvalues expressed in other planes.

For systems of order 1/n, the eigenvalue is defined herein by

X = S1/n , where X is the eigenvalue and the eigenvalues lie on a

complex plane called the sl/n-plane. The general form of the time-

domain state vector response is no longer the exponential; it is

something more complex. A solution to Eq (42) can still be found

relatively easily by mapping the eigenvalues for the system of order

1/n to a first-order system. Recalling the recursive equation for an

equivalent first-order system, Eq (12), one can determine that for

an eigenvalue, X, which is defined by first-order system, X = Wn

This implies two important ideas. First, one can determine the

eigenvalues, X, map them to co, and determine system response from

w as described for the classical system. Second, because the

eigenvalue X is the nth-root of the eigenvalue co, there are n

X-eigenvalues corresponding to a single co-eigenvalue. These X -poles

actually produce more than just the response described by the
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co-eigenvalue. Some of the X-poles produce the exponential response

desribed by a corresponding co-eigenvalue, but the others have been

shown to generate terms of negative powers of time in the response

(1:92-104). This power response correspunds to the relaxation or

creep response observed by Nutting in viscoelastic materials (2:746,

20:681). If the equations of motion for the system of order 1/n are

transformed into the Laplace domain, the complex plane will be

called herein the sl/n-plane, where the superscript denotes the

order of the derivative in the eigenvalue definition.

The type of response due to a pole in the sl/n-plane can be

determined from pole location, just as in the sl-plane. Because the

X-poles will be mapped into the sl-plane to determine response, it

is important to recognize which regions of the s'/n-plane map to the

four quadrants of the sl-plane (Figure 1).

+ Ir

+Im\1

maps

R+Ren+Re -R +Re,
1/n

to- 1................................-.m.

• -Im 1

1/n -Im
1

s1-plane in sl/n-plane sl-plane

* Figure 1. Mapping Regions Between sl/n-plane and sl-plane
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* The type of response due to poles in these regions of the sl/n-plane

is determined by the type in the corresponding sl-plane quadrant.

Poles will also lie outside these regions, and it has been shown that

0 these poles produce relaxation response described by the terms of

negative powers of time (1:92-104). The next section addresses

poles and mapping in more detail.

Mapping Regions

* Starting from the sl/n-plane and mapping to the sl-plane, the

mapping function is

zi = (zi/n)n where Zl/n - complex number in s1/n-plane

* zl = complex number in sl-plane

If one considers the inverse mapping, i.e. zj/n=(z1 )1 / n , it is evident

that each quadrant of the sl-plane maps to a region of less angular

* width in the sl/n-plane. The kth quadrant, (k-l)n/2 < arg(zl) < ki/2

for k=1 to 4, maps to the smaller sector (k-1)7c/2n < arg(zl) <

kn/2n. It is easy to identify which sectors of the sl/n-plane map to

* each of the quadrants in the sl-plane. The rays in the s1 /n-plane and

the sl-plane axes, to which they correspond (or map), bound the

sectors in their respective plane:
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maps
* The ray on which S1I n = Al/n e io - + real axis

to
maps

The ray on which s1/ n - A1/ n e ± int/n ._ - real axis
to* maps

The ray on which s1/n = Al/n e i72n _p + imaginary axis

tomaps

The ray on which S1/m = A1 / n e- i 2 n  - - imaginary axis

0 to

where A is an arbitrary magnitude. This mapping is shown

graphically in Figure 1. It is important to recognize that regions do

not reduce or increase in size. The regions just appear differently

on the two planes. The s1 /n-plane view only shows more regions so

that the relaxation response can also be seen.

To understand to what these other regions refer, it is

necessary to discuss the concept of a Riemann surface and sheets of

complex numbers (17:621). Complex numbers be considered as on a

spiral surface like an infinite corkscrew, because the angular

parameter of a complex number is not unique. The angle is the same

if 2np radians, where p is an integer, are added or subtracted. Each

complete twist of the screw represents one cycle of 2n radians.

This twist is a sheet, often called a Riemann sheet, of complex

numbers. Where the sheet begins and ends depends on the branch cut,

which is defined by the specific problem and function singularities,

in the plane. For example, since in this thesis the branch cut is

• assumed along the negative real axis, a sheet may be defined by

those complex numbers whose argument (angle) lies between 7t and
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.t. An analytic complex function requires a closed Riemann surface

in order to satisfy the requirement of differentiability everywhere.

The surface is composed of sheets joined together at the branch

cuts, such that a continuous surface is formed. Because the function

w = z n maps one sheet to n sheets, i.e. numbers with argument 2n

become numbers with argument 2n7r, the corresponding Riemann

surface consists of n sheets linked together at the branch cuts like

a chain. The first and last cuts join to make a continuous surface,

like a loop of chain.

In the classical first-order system eigenvalue problem in
01- -which the eigenvalue, X, is defined by Dtx = Xi and there are no

fractional powers of X, the mapping function is w = z1 , and there is

only one sheet. Hence, the reader may not be familiar with poles on

other Riemann sheets. Once the eigenvalue problem is defined by

Dt x =. , there are n sheets on whichthere are have poles; the

si/n-plane view shows them all as sectors of angular width 27r/n

radians. Considering the sheets as a stack, it is easy to visualize

the plane representation as the projection of all the poles in the

stack onto a planar surface. Often, because one is interested in

poles on only one sheet, the mapping is applied to only those poles,

and the poles are represented alone on a plane. This plane really

only corresponds to the one sheet, but such a representation removes

confusion concerning other poles of no current interest. Hence, this

is done in this thesis. An example is the mapping in Figure 1.
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'The systems in the example problems which follow are of

order one half and, thus, require surfaces of two sheets. One sheet

is taken as

So {z I - : < arg(z) < n}

In order to avoid the confusion of jump discontinuities experienced

by poles moving across the branch cut joining cuts defined at the

extremes of the arg(z) range, e.g. 0 and 47c , this thesis uses two

half-sheets:

S-1 {z I - 27c < arg(z) <- 7c

Si={Z I n < arg(z) < 27}

S-1 and S1 are joined at arg(z)=2K and arg(z)= -2K. S-1 is joined to

So at the branch cut where arg(z) = -K, and S1 is joined to So at the

branch cut where arg(z) = K1 . The advantage of this choice of sheets

is that mapping to the sl-plane is done by halving the argument of

the quantity being mapped and no poles move across the branch cut

joining the extreme argument values. Consequently, the jump

discontinuities in the argument are avoided. In summary, the poles

lying in the si/n-plane outside the sectors corresponding to the So

Riemann sheet, considered-the sl-plane in this thesis, reside on

other Riemann sheets. These poles have been shown to contribute

terms of negative powers of time to the response (1:92-104), and

these terms appear to correspond to creep or relaxation response in

viscoelastic materials (2:748, 20:681). As such, this response is

stable and non-oscillatory. Therefore, the poles lying on the So

sheet are solely responsible for the system stability and oscillatory

motion, because their response is exponential, Aewt, which can be
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oscillatory and stable or unstable, accordingly as Re (o < 0 or

Re w > 0, respectively.

Calculation of Total Reso.onse

Finally, to complete the discussion of the solution for system

response, the method of actually calculating the total response is

necessary. A detailed description of the calculation of the inverse

Laplace transform of the state vector transform, X(s), is given at

the end of Example 1 in Chapter IV after the reader has become more

familiar with the pole structure of systems of order 1/n. The

calculation involves the evaluation of a contour integral in the

s1-plane.

Summary f Solution Process

1. Formulate the system of order 1/n (as illustrated in the
examples).

2. Determine the optimal gain matrix K through an algebraic Riccati
equation solver, such as RICCATI in MATRIXx , by using the
equivalent first-order system, Eqs (37-40).

3. Solve the eigenvalue problem for the eigenvalues, X, and

eigenvectors, 4 , .in the sl/n-plane.

4. Map the poles, ., to the s1 -plane poles, co.

5. Calculate the total response (as illustrated in Example 1).
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IV. l Problems

In this chapter the theory is demonstrated by numerical

solution by finite element analysis of two examples of simple

controlled structures. An iterative solution of the open loop

equation of motion for the first mode eigenvectors and eigenvalues

allows cross-checking the open loop eigenvalues and eigenvectors

* computed by matrix manipulation with MATRIXx. The first example

is a beam of viscoelastic material, pinned to allow only rotation at

both ends. Both rotations are controlled. The second example is a

* long, thin aluminum rod, clamped at one end and damped by a

viscoelastic pad at the other. Displacement is constrained to

longitudinal motion and is controlled at the damped end.

These problems illustrate the method of applying the control

theory to structures, as well as the technique of expanding the

structure equation of motion into a differential system of order 1/n.

The first problem has a lot of symmetry (damping, control, boundary

conditions, geometry), while the second does not. The second shows

how to incorporate both viscoelastic and elastic materials into a

* problem. The basic concept of finite element analysis does not

change; viscoelastic materials are included in the element equation

of motion and boundary conditions. The problems also show the

* technique of using MATRIXx to solve the Riccati and eigenvalue

equations.

*E,, am1. Problem 1: Simply-Supported Beam
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Problem Statement: Given a simply-supported beam (pinned ;-

both ends to allow only rotation) made of butyl B252 rubber as

shown beiow, determine the open and closed poles to illustrate the

effect of the linear feedback theory on system response, as

described by rotational displacements 01 and 02 at nodes 1 and 2.

02 EI] h

X-section

L

Figure 2. Example 1. Simply-supported Beam

* Geometry:

L = 1.0 m

b = 0.1 m

* h=0.1 m

I= bh 3 /12 = 8.33E-6 m4 (Moment of Inertia)

E - a time-dependent modulus to be described later in the Laplace

* domain

v1 = V2 = 0 (transverse linear displacements of nodes)

* ul = control torque, determined by optimal control, u*, on 01
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U2 = control torque, determined by optimal control, u*, on 02

,Stress-Strain Model

As Bagley (3:920) demonstrated, Butyl B252 rubber's tensile

stress-qtrain relation, can be written in terms of a fractional

derivative model of crder a, which is determined by experiment

involving sinusoidal excitation over a range of frequency 0 _< co _< 104

cps:

a (t) + bDc'a(t) = Eoe(t) + E1De(t) (2)

where a (t) is the normal stress, e(t) is the normal strain, a = m/n (m,

* n are integers), and Eo and El are positive, constants. For this work

b equals zero. In the time domain an operator, PE, acting on the

strain, e(t), can be defined such that Eq (2) can be written as

a(t) = PE( E(t) ) (45)

In the Laplace domain, this operator can be described as a funtion,

E(s), where the overbar denotes the Laplace transform domain, of the

Laplace variable, s. This can easily be seen if one takes the Laplace

transform of the general stress-strain model, which can be done

since the model is linear. Assuming zero strain at t=0,

Y(s) -- Eo E(s) +- s (s)]
S 1 -a

a (s) = (Eo + Es ) e(s)

a(s) = E(s) e(s) (46)

The function E(s) is not a transform; it corresponds to an operator in

the time domain and not to a function. This form of the time-
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dependent modulus, i.e. E(s), is useful for applying the

viscoelasticity correspondence principle (5:42). This principle

states tnat in tne Laplace domain the time-dependent modulus can

be substitutea for a presumed-elastic (constant) modulus, E, in an

equation. Because the operator PE(e(t)) can be expressed merely as

an polynomial expression in s in the Laplace domain, it can be

grouped as one term, as shown above. The correspondence principle

says that E can be replaced by E(s) in the Laplace domain when

viscoelastic loads are calculated using convolution which

corresponds to multiplication in the Laplace domain. When

viscuc!astic materials are used in finite element models, the

equation of motion (EOM) for an element is first derived assuming a

constant modulus, E. The correspondence princip!e is then applied to

the transform of the EOM. The resulting equation is solved or the

response.

Based on Madigowski data, Bagley (3:920) has determined c and

positive shear coefficients Go and G1 in the shear stress-strain

relationship for butyl rubber and several other materials:

c (t) = Goy(t) +G1Dy(t) (47)

where 'r is shear stress and Y is the shear strain. To determine EO

and E1 one applies the basic relation between Ey, Young's modulus,

and G, shear modulus, i.e. Ey = 2(1+v)G, where v is the material's

Poisson's ratio, and uses Go and G1 to determine Eo and El,

respectively. For this work the rubber was assumed incompressible,

so v = 0.5. Therefore,
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BtlB252 Rubber Values

p = 0.92 g/cm 3 = 920 kg/m 3

aL = 0.5

Go = 760,000 N/m2

G, = 295,000 Nsl/ 2/m 2

Eo = 2,280,000 N/m 2

El = 885,000 Nsl/ 2 /m 2

*4These figures are valid for 0 frequency < 104 Hz.

Elastic Formulation of Eaato 2f Motion

In finite element modelling the general equation of motion for

a sturcture is formed by assembling the equations of motion of

individual elements into one large system equation. The

correspondence principle is applied to the element equation of

motion for those elements containing the viscoelastic material.

These modified equations are assembled into the system equation of

motion, and the EOM is solved for the system response.

The general form of the equation of motion for an elastic

i0 finite element is

Rfd + kd = r (48)

where

= element mass matr bx (lumped or consistent)

d = element displacement vector

k = element stiffness matr ix
Sr - element applied nodal loads
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Cook (7:87) gives the stiffness matrix for an elastic beam element

as

12 6L -12 6L

* k=El 6L 4L 2 -6L2L2

L3 -12-6L 12 6L

6L 2L 2 -6L 4L 2

where E is the presumed-elastic modulus and the displacement

vector is arranged by alternating translational and rotational

displacements for each degree of freedom, i.e.

d =
V2

02

The applied element force vector, , brings in the control torques:

0

U2

Since rotational displacements are of interest, Cook's consistent

mass matrix must be used:

156 22L 54 -13L

M m 22L 4L 2  13L -3L 2

420 54 13L 156 -22L
22-13L -3L -22L 4L2

where

m = pAL (A = cross-sectional area)
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Since there is only one element in the structure, the assembled

matrices, hence the equation of motion, are the element mass,

stiffness, and force matrices. Applying the displacement boundary

conditions reduces the system to two degrees of freedom:

pAL 4L2  ~3L 2  (t + El44L2 2L2f e(t) -ju,(~'

420 -3L 2  4L 2  - 0 62 (t) L3  2L 2 4L2 02 (t) J u2 (t) I

or

* MI 6(t)'~+ EK U, et)\= u(t)\
e 2 (t) 1 +  E 02 (t) J u 2 (t) 1 (49)

where

420 -3 4

1 21

Because E will be replaced by E(s), the stiffness matrix, K, has been

* identified as EK.

Applicatio 9f the Correspondence Principle

The Laplace transform, denoted by capital letters of functions,

of the system is

Ms 2 )(s) +EK; )(s) = U(s) (50)

* where s is the Laplace variable and
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e(s) =I e1 (s)

e)2(s)
U(S) = {Ul(S))

6(s) u, (S)

E(s) replaces E and gives the equation of motion in the Laplace

domain:

[ s 2 + ElS 1 f2 K' + EoK;I)(s) = U(S) (EOM) (51)

Qpe Lo__op e nse

Recall from Chapter III that the Laplace variable s corresponds

to the eigenvalue for a first-order system. Because the fractional

derivative transforms have s to fractional powers, an eigenvalue X

is defined in the s11/2 -plane by X . S1/ 2 , in order to have a

polynomial with only integer powers. The eigenvector, 0, is given by

the specific value of E(s) for the eigenvalue X. Then the open loop

or homogeneous e,"uation of motion is

M'ik' +EjIK'+EoK' =0 (52)

which can be solved recursively for its first mode eigenvalue, X1,

and eigenvector, , in the s1/2 -plane via an iterative routine (3:922-

923):

] 1 1 -(n +1)
4(n 

+1)

where (n ) and (n +1) are iteration steps. The routine steps are
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1. Estimate X ,  1 Quality of guess only affects speed

of convergence. For this thesis 1+i was simply used for X,

Undamped open loop first mode eigenvectors were used for 01

2. Iterate on (01 holding X,1(n ) constant until the eigenvector

converges, i.e. changes less than a tolerable difference.
(n+1) -*(n +1) (n -(n

3. Use new X, and 01 as estimates for X, 0

4. Repeat steps 2 to 3 with until X, (n ) converges.

Because it is a quartic equation, there are four values of X, (n +1)

generated each iteration: %1 / n = A1/nf{ Cos [(K + 21ck)/n] + i sin [(Q +

* 27ck)/n] I where Q is the argument of X, A is the magnitude of X, and k

is an integer ranging from 0 to n-1. One value must be chosen for

the iteration. Since each value corresponds to the possible solution

• on its branch or sector of the plane, the same solution must be

pursued to gain convergence to the valid eigenvalue. Identification

of branches is not difficult for open loop poles if one assumes that

* the pole argument does not vary greatly. Because fourth-roots are

separated by -n/2 radians, two can never lie in the same quadrant.

Therefore, each branch can be identified by the signs of the real and

* imaginary parts. To maintain the same branch, always iterate with

the root with the specified signs. This works well for open loop

poles, but closed loop poles may move drastically from the open loop

* positions and into other quadrants. Improved algorithms for this

situation have been studied currently by Captain Michele Devereaux

(8).
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Furthermore, because it is a quartic equation, there are four

distinct eigenvalues for each eigenvector. The algorithm converges

to only one at a time, so the iteration must be completed for each.

Eigenvalues will always be real or occur in complex conjugate pairs

because the coefficients are real. Moreover, there should be an open

loop pole in each quadrant, because the viscoelastic model yields

both exponential and power time response. The right two quadrants,

because they map to the sl-plane, give exponential response (stable

or unstable); while the left two quadrants of the s1 /2 -plane

correspond to other planes in which poles give power response.

Hence, one set of poles should be in the first and fourth quadrants;

and one set should be in the second and third quadrant. There may be

two negative real poles which correspond to lying on planes not

shown in s1 /2 -plane presentation. This procedure must be modified

slightly for higher eigenvalues (3:922-923, 1:76-78).

Applying the problem values to the EOM matrices gives

M =0.0219 kg-rm2[ 4 -31
-3 4

• E1K = 14.75 N-m f2 1 1

1 2

EoK = 38.0 N-m [2 1]
• 11 2

The mass matrix M is multiplied by rad/sec 2 in the equation of

motion. Thus, the final units are N-m, i.e. torque which is balanced

in the equation of motion.

* 46



The controls analysis package (code) MATRIXx (14) was used to

perform the iterative solution. MATRIXx has a feature called a

command file (14:7-3 - 7-6) which allows a series of commands to

be stored in an executable file. It is basically the equivalent of

program. A MATRIXX command file entitled, 4th-order BEAM

EigenValue Solver or 4BEAMEVS.EXC, was created to solve the

recursive equation for the beam open loop eigenvalues of the first

mode. The user supplies the assembled mass and stiffness matrices,

as well as estimates for the first mode eigenvector and one of the

eigenvalues. The program is interactive, and the user is asked to

identify the desired root from the output and input it for iteration.

The difference between past and present step values of the desired

eigenvalue is displayed for both real and imaginary parts, and the

user is queried about continuing the iteration on the branch. This

could be automated, if desired. For this work the iteration was

continued until the difference between past and present step values

of the desired eigenvalue was less than 10-5 on both real and

imaginary parts.

Because of the symmetry of the problem, especially the

damping, the damping is expected to be proportional damping, i.e. the

damping matrix ElK can be written as a linear combination of the

mass and stiffness matrices (19:197). By inspection it is obvious

that El K can be written in terms of the EoK. In this case, the

equations comprising the system can be decoupled, and the

eigenvectors are the same as those for elastic system. The elastic

first mode (19:213) is known to be
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1 }(54)
and the first guess of the eigenvalue was X, = 1 + i. Two conjugate

pairs for the first mode result from the iteration:

ki = 2.9747 ± 4.1150i and -2.9747 ± 0.8740i

* The poles with the positive real part correspond to vibrational

motion, while the poles with the negative real part correspond to

relaxational motio,.

• The iteration also gave the elastic first mode eigenvector,

Eq (54), for all eigenvalues. This occurs because of the proportional

damping.

* These values can be checked because the first eigenvector is

known. By premultiplying by the transpose of the jth eigenvector

Eq (52) reduces to a fourth-order scalar polynomial in Xj:

"-'T

By using a root finding routine, such as the ROOTS command

00

(14:4-16) in MATRlX, the elgenvalues are found to be the same. The

elastic second mode is also known:

1 (55)

and the eigenvalues can be found by the same method:

X2 = 7.1139 ± 11.0272iand -11.6288, -2.5989
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* The poles with the positive real part correspond to vibrational

motion, while the poles with the negative real part correspond to

relaxational motion.

.1.2-_derL S Formulation

The general problem can be posed in a fractional state-space

by a 1/2th-order system (3:921-922). A fractional state-space is

defined as a state-space in which fractional as well as integer

* derivatives of variables are included in the state vector, e.g.

_ JtDrae6(t)
SDI' 12 (t)

o(t)

or

S3 /28(s)

s() sle(s)
sl 12E(s)

E)(s)

whe4m states:

00 3 s3 2 _(S)

0 M 0 O s1 E)(s) -M

S1 0 2 0 M s 1 8(s) -M 0 0 0 lslE(s)

* M 0O EK 8(s) • 0 0 0 E0K 6(s)
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0

(56)

• where 0"=[ 0] and I--[1 0]. This is rearranged to
O0001 0 1

S1 28(S) -Ae(S) +a U(s) (57)

* where

' 0 M0 0 -M 000 0 0

0- _0 0 0

M 0 El o 0 0 Eo

0 0 0 0

To complete the system, it is assumed that all states are outputs

and that there is no feedforward to the output, i.e.

Y(s) = C %s) + D U(s)

where

SC= 4m x 4m identity mat ix
D=m xq null (zero) matrix (q = number ofcontroI inputs)

For the specific problem m=2 and q = 2, so the system has

* eight states and two control inputs.

-- 50



1.en L= Poles via MATRIXX

If the control vector is set to zero, i.e. 0, in the 1/nth-order

* system, Eq (57) reduces to an eigenvalue problem. However, there

will be m sets of eigenvalues, where m is the number of degrees of

freedom again. Eigenvalues and eigenvectors of the A matrix were

* determined by the EIG command of MATRIXx (14:4-23). These

corresponded to the first two modes. The first mode eigenvalues

and eigenvectors determined by the recursive solution of the open

• loop equation of mntion, Eq (52), match those determined by

MATRIXx.

SClosed Lo Poles via MATRIXX

Solution for closed loop poles and eigenvectors is quite easy

on MATRIXx. First, the system must be posed for the Riccati

* Equation solver in the appropriate A - form, as indicated in

Chapter III:

"-(t)= A 9(t) + Bu(t)

Therefore, for this example

9(t) = A + ABJ(t) (58)

The MATRIXx Riccati solving command, called RICCATI

(14:14-19), was used to determine the optimal gain matrix, P, such

* that
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t), -l 6 T n -
T _ - -

u (t) - - P _(t) (59)

However, the routine also output the overall gain matrix, KC, where

KO=R BA P

and this matrix was used in the calculation of closed loop poles.

RICCATI(S,MNS) requires three inputs: a system matrix (S), a

performance index weighting matrix (FQ, and the number of states

(NS) in the state vector. These are

NS = 4m

where

NQ = 4m x 4m null mafr ix (same dimensions as Q)

NR = 4m x q null matr ix (same dimensions asR)
m= 2 for this problem
q = 2. for this problem

For this problem m= 2 and q = 2. The closed loop system, Eq (58),

becomes an eigenvalue problem once the gain matrix for the optimal

* steady-state linear feedback is known. The Laplace transform of

Eq (58) is

s 1 Q ()(s) - (AN - "TATp)_(s) (59)
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For this specific problem the inputs to RICCATI are

-'2
A_ AB

0 0000

NS= 8

MATRIXx then gives P and K:

P = 1000 *
* 0.0000 0.00OO -0.0COI 0.0001 0.0002 -0.0001 0.0025 -0.0008

0.0000 0.0000 -0.0001 0.0001 0.0002 -0.0001 0.0025 -0.0008
0.0000 0.0000 0.0001 -0.0001 -0.0001 0.0002 -0.0008 0.0025

.0.0001 0.0001 0.0005 .0.0003 .0.0025 0.0008 0.0000 0.0000
0.0001 -0.0001 -0.0003 0.0005 0.0008 -0.0025 0.0000 0.0000
0.0002 .0.0001 -0.0025 0.0008 0.0186 0.0021 0.0409 -0.0091

-.0.0001 0.0002 0.0008 .0.0025 0.0021 0.0186 -0.0091 -0.0409
0.0025 -0.0008 0.0000 0.0000 .0.0409 .0.0091 2.2763 1.7681

-0.0008 0.0025 0.0000 0.0000 -0.0091 -0.0409 1.7681 2.2763_

=
-.0.6380 0.1986 5.6916 0.6239 -48.2600 -26.8662 0.0088 -0.00441
0.1986 .0.6380 0.6239 5.6916 -26.8662 -48.2600 .0.0044 0.0088i

MATRIXx's EIG command (14:4-23) solves the closed loop eigenvalue

problem for the closed loop poles and eigenvectors of both modes.

The poles are given in a jumbled order:

7.2744 +11.2328i
7.2744 -11.2328i
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-0.2318 + 3.0553i
2.9596 + 4.2008i
2.7549 + 4.6337i

-0.2318 - 3.0553i
2.9596 - 4.2008i
2.7549 - 4.6337i

The command EIG does not identify which closed poles correspond to

which open loop poles. In general, if the open loop poles are known

for each mode, the closed loop poles for each mode can be identified.

Starting from the open loop system, feedback gain is increased from

zero to full value in small enough steps to see the poles move from

open loop to closed loop positions. The tracks map each open loop

pole to its closed loop position. In controls analysis this plot is

Cc1j -ot-oc'.s. The eigenvalues for each mode of the specific

problem are

ki1 =-2.9596 ± 4.2008i and -0.2318 ± 3.0553i

X2 = 7.2744 ± 11.2328i and 2.7549 ± 4.6337i

The eigenvectors, as determined by the EIG command, remain

the same as the open loop eigen vectors, which are the elastic

eigenvectors Eqs (54) and (55). This makes identification of the

poles easy.

The closed loop poles can be determined by creating a scalar

equation using the known eigenvectors, as in the open loop case. The

control vector is replaced in the system, Eq (58), by the optimal

control vector, which is K- . The vector is brought to the left-

hand side of the equation. The scalar equation of motion is given by

the bottom m rows, where m is the number of degrees of freedom,
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of the system equation and now has non-zero coefficients for X3 and

X2 and becomes

jT[ 4T +M XKi m + X4- 2m +Xj Eik+K 3 m )+( EOk+C 4m ) =

where KCqm is the qth set of m columns of KC. The first and second

mode eigenvalues are found to be the same as the quoted above. The

* Bagley and Torvik algorithm can be modified to solve this new

eigenvalue problem. Unless the eigenvectors are known, the only

other means of determining which eigenvalues belong to which

modes is the iterative method of increasing gain.

Measures of Change in Stability

A quick check for increased stability can be done by comparing

pole positions: are closed loop poles further left (i.e. real part) than

open loop poles, and do closed loop poles have a larger ratio of

imaginary to real components?
0 In the s1-plane the real component equals -On, where t is the

damping ratio and (on is the natural frequency. The amplitude of the

response is driven by e-;(Ont. Consequently, pole movement further
0

left on the real axis results in a more negative exponent; and, the

system amplitude dies faster. A measure of this motion is given by

the difference between open and closed loop real components.
0

Mapping poles between the S1/2 - and sl-planes will effect the

magnitude of the value but will not change the sign which identifies

the direction of motion (plus means left and negative right).

0
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The imaginary component of the pole in the sl-plane is cod , the

damped frequency. Therefore, the ratio of imaginary to real

components gives a measure of both the damping ratio and the

damped frequency with respect to the natural frequency. Moreover,

the cosine of angle between the negative real axis and a line drawn

between the pole and the origin is the damping ratio, . The larger

the angle the smaller is the damping ratio, which means less

damping. The ratio of real to imaginary parts, thus, is also a

measure of 4. Since stable response poles lie in the two s1 /2-plane

sectors it/4 <0 ! i/2 and -x/2 < e < -n/4 , a higher ratio puts a

pole closer to the imaginary axis (larger tan 0; hence, larger 0) than

another. Therefore, it maps closer to the real axis in the sl-plane

and has a lower damped frequency and higher damping ratio, .

Because the poles in the left half s1 /2-plane do not lie on the

sl-plane and, thus, do not contribute to typical stability measures,

their movement with respect to stability is less clear. These poles

cause negative-power time response which decays slower than an

exponential response. If they move right or increase their

imaginary-to-real ratio, they move toward the sl-plane. If they

move onto the left half of the sl-plane, their response is more

stable than before, because the poles now cause decaying

exponential response. Therefore, motion right and increasing ratios

of poles in the left half s1/2 -plane would seem to indicate increased

system stability. Under these rules these two measures, difference

between real components and imaginary-to-real ratio, give

measures of the change in stability of the system.
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The open loop eigenvalues of the first and second modes are shown

in Figure 3.

12

8.

4-- VIBRATIONAL 1
4 • I

0 VIBRATIONAL 2

1 2 -10 - 8 -6 -4 2 0 2 4 6 8 E RELAXATION1
-4-- 0n RELAXATION 2

-8

1 21I 0
Figure 3. Example 1 Open Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

and the closed loop eigenvalues are shown graphically in Figure 4.
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Figure 4. Example 1 Closed Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

Real components of the open and closed loop eigenvalues, Re(O)

and Re(C) respectively, the difference between the open and closed

loop real parts, denoted by Re(O)-Re(C), and ratios of the imaginary

to real parts, denoted by I/R, for the first two modes are tabulated

in Table I. A negative number in the Re(O)-Re(C) column indicates

the poles have moved right.

Table I. Stability Measures for Example 1

Mode Re(O) Re(C) Re(O)-Re(C) Open I/R Closed I/R

1 2.9747 2.9596 0.0151 1.3833 1.4194
-2.9747 -0.2318 -2.7429 0.2938 13.1808

2 7.1139 7.2744 -0.1605 1.5501 1.5442
-11.6288 2.7549 -14.3837 0.0 1.6820
-2.5989 2.7549 -5.3538 0.0 1.6820
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* The data from this table shows that optimal control does not

necessarily mean most stable for all poles. The first two

eigenvalues, which represent the exponential response of the s1 -

* plane, of the first mode increased in stability, as indicated by the

motion left of the real part (positive difference Re(O)-Re(C)) and by

the increase of the imaginary-to-real ratio, I/R. However, the

• positive-real-part eigenvalues of the second mode destabilized

slightly, as shown by the motion right of the real part (negative

difference Re(O)-Re(C)) and a decrease in the I/R ratio. The second

* mode poles which have negative real parts moved right far enough to

enter the region corresponding to the left half sl-plane. Therefore,

these poles, which

* formerly gave non-oscillatory relaxation response, now give a

vibrational response! Furthermore, the poles lie nearly on top of the

positive-real-part poles of the first mode. Because of the first and

* second mode eigenvectors, Eqs (54) and (55), there is constructive

interference at node 1 and destructive interference at node 2.

Finally, the negative-real-part eigenvalues of the first mode also

* destabilized by moving right but has increased its damping ratio and

lowered its damped frequency, as indicated by the increased I/R

ratio.

Most of the closed loop poles are not very far from the open

loop poles. It would appear that these values are already fairly

optimal under the current evenly-weighted performance index. The

problem appears to be heavily, perhaps overly, damped, and the
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destabilization of the one pole may represent a desire for the

system to be less damped. By destabilizing t.he pole the system

would appear more flexible.

The system is stable with the optimal feedback, which

produces significant changes in the response. However, this system

is not very indicative of large, flexible space structures because of

the geometry, i.e. this system is heavy weight. Furthermore, there

is so much damping material that the system is probably overdamped

and does not need much feedback, if any. Therefore, a problem more

representative of the structures of interest is needed.

Modified Beam Geometry t Represent a Flexible Space Structure

Such a problem can be achieved by a modification of the

* geometry to represent a more slender beam. Therefore, let b = h =

0.01m . This divides M by 100 and divides K' by 10". The open loop

eigenvalues are

X1,OL = 0.8936 1.0333i
-0.8936 0 0.7276i

and

-2,OL = 1.9573 + 2.5320i

-1.9573 ± 1.1183i

and are shown graphically in Figure 5.
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Figure 5. Modified Example 1 Open Loop Poles for Both Vibrational
and Relaxation Modes 1 and 2.

By following the same procedures outlined earlier, the gain matrix

* KC is determined to be

KC =

-0.0007 0.0001 1.0009 -0.0007 -0.0036 -0.0014 0.9924 -0.00381
0.0001 -0.0007 -0.0007 1.0009 -0.0014 -0.0036 -0.0038 0.9924

The closed loop eigenvalues are

SA.1,Qc = 0.2583 ± 25.5363i

0.0000 ± 1.0000i

and

X2,CL = 1.3870 ± 67.5522i

0.0000 ± 1.0000i

and are shown graphically in Figure 6.
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• Figure 6. Modified Example 1 Closed Loop Poles for Both Vibrational
and Relaxation Modes 1 and 2.

0 The stability measures for the poles are shown in Table I1.

Table II. Stability Measures for Modified Example 1

Mode Re(O) Re(C) Re(O)-Re(C) Open I/R Closed I/R

1 0.8936 0.2583 0.6353 1.1563 98.8630

• -0.8936 0.0 -2.7429 0.8142 00

2 1.9573 1.3870 0.5703 1.2936 48.7038

-1.9573 0.0 -1.9573 0.5713 00

The data in Table II shows stability increases with the optimal

feedback control for the positive-real-part poles of both first and

second modes. These poles have moved left (positive Re(O)-Re(C))
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and have dramatically increased their imaginary-to-real (I/R)

ratios. The latter indicates a significant increase in damping ratio,

S, as will as a significant decrease in the damped frequency. Once

again, the negative-real-part poles moved right (negative Re(O)-

Re(C)) as well as increased their I/R ratios. In fact, these poles

achieved the maximum value of the I/R ratio. They have moved to

the imaginary axis and will map to the negative real axis in the s1 -
0.

plane. Therefore, these poles, which previously gave relaxation

(power-!a w) response, now give purely monotonically decaying

exponential response.

The positive-real-part poles produce the characteristic

damping and frequency parameters for the oscillatory motion. The

eigenvalues in the s1/2 -plane and sl-plane, denoted by EV S1/2 and

EV s1 respectively, and oscillatory motion parameters, which are

damping ratio (p), natural frequency (con), and damped frequency (cOd)

are shown in Table Il1.

Table Ill. Example 1 Oscillatory Motion Parameters

EV s I /2 EV s1  (On Wl

Open Loop
0.8936 ± 1.0333i -0.2692 ± 1.8467i 0.1442 1.8669 1.8467
1.9573 ± 2.5320i -2.5800 ± 9.9118i 0.2519 10.2422 9.9118

Closed Loop
0.2583 ± 25.5363i -652.04 ± 13.192i 0.9998 652.17 13.192
1.3870 ± 67.5522i -4561.4 ± 187.39i 0.9992 4565.1 187.39

0
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The data shows a tremendous improvement in system response. The

damping ratio, C, becomes nearly equal to one, i.e. critical damping,

which causes the system response to approach equilibrium faster

than any other damped response. The resonant frequencies have been

driven up to much higher frequencies. Therefore, the oscillatory

motion dies much faster, because e- COnt governs the decay of the

envelope of the motion amplitude. Also, the ability to excite the

structure, by simple handling or operation, has been reduced, e.g. it

would not be excited by merely walking on it. Furthermore, the

resonant mode separation has been increased from 8.375 rad/sec to

3913 rad/sec. This effectively isolates one mode from another, and

controllers can neutralize one mode with less excitation on another.

These results show conclusively that the optimal linear feedback

control utilizing fractional state-space can successfully and

significantly increase system stability.

SContribution Q1 Each De.riva. tiv IQ BJ& StrLcture

Structures have been controlled by position, velocity, and

acceleration feedback in the past. What benefit lies in also feeding

* back fractional states? Insight to the answer can be gained by

feeding back only one derivative at a time.

For example, feeding back only velocity (using the optimal

gains determined for the fractional state model) yields poles further

left than those from feeding back the entire state matrix:

0.0007 ± 25.5571i and 0.0022 ± 67.5737i which map to

-653.16 ± 0.0358i and -4566.2 ± 0.2973i. Although these have a
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better damping ratio, they do not minimize the performance index.

More highly damped is not necessarily optimal. However, this does

show that the velocity is a major player in shifting the poles left.

If the 3/2-derivative is fed back alone, the s1 /2 -plane poles

are 1.0466 ± 1.0243i and 2.9034 ± 2.3290i. The poles have moved

right and have even become unstable! Tierefore, tne 3/2-derivative

would counteract some of the strong stabilizing influence of the

first derivative, so that the performance index is minimized further

than by using velocity alone. This last statement derives from the

fact that the optimization of the gain did not zero the gain for the

3/2-derivative. If the poles of the velocity-only feedback

minimized the performance index, then this zeroing would occur.

If both 3/2-derivative and first derivative are fed back, then

the poles become nearly the final optimal values: 0.2590 ± 25.5558i

and 1.3892 ± 67.5595i where 0.2583 ± 25.5363i and

1.3870 ± 67.5522i are the optimal poles in the sl/ 2-plane. Hence,

these derivatives are responsible for the majority of the movement

of the poles.

If the other derivatives are fed back individually, a pattern

emerges. The odd half-derivatives (1/2, 3/2, etc) move the poles

right, and the even half-derivatives (0, 1, etc) move the poles left.

Furthermore, the higher the derivative the greater is its effect in

each category. So, a 3/2-derivative moves the poles more than a

1/2-derivative. The gains of each are traded off to minimize the

performance index with the lower derivatives acting as fine tuners.
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Because the higher derivatives result in higher order

polynomials in the feedback transfer function, they can contribute

more poles to move the root-locus left in the sl-plane. Take, for

example, a general negative feedback system with plant transfer

function G(s) and feedback transfer function H(s) in the s1 /2 -plane.

The characteristic equation is 1 + G(s)H(s) = 0. If h(t) is a

1/2-derivative, then its transform in the s1/2 -plane is H(s) = As,

where A is a constant. H(s) can generate only one pole (root of the

characteristic equation) for the system, because H(s) increases the

orderof the characteristic equation by only one. However, if h(t) is a

3/2-derivative, then H(s) equals As 3 and generates three poles

because it raises the order by three. Location of the poles moves the

root-locus left or right, but more poles will cause more effect than

less. Therefore, the higher derivatives have more of an effect on the

pole structure.

Calculation o~f Total Reso~onse

Finally, to complete the discussion of system response and

stability, the method of actually calculating the total response is

necessary. This will hopefully clarify how the poles which have

been neglected so far (i.e. those not on the s1 -plane) are accounted

for in the total response.

Bagley, in his dissertation (1), and Bagley and Torvik (2:747-

748) describe the calculation of a system response to impulsive

loading. Fundamentally, the inverse Laplace transform of the

displacement vector, L-I[X(s)], where s is the Laplace variable and
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the capital X indicates the Laplace transform of the state vector.

must be calculated. By definition, the inverse transform is a

contour integration in the sl-plane, as shown in Figure 3. Segments

3, 4, and 5 are required because of the branch cut on the negative

real axis.

1
s -Plane +lm

0J

3 1

+Re

05

06

Figure 7. Integration Contour to Calculate Response

* The inverse Laplace transform of X(s) is defined as

L1 [X(s)] =1._7 f es t X(s) ds.

The segment of the contour which produces the inverse transform

L-IX(s)] is segment 1. The transform X(s) can be written as a
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summation of the 4m eigenvalues and eigenvectors, where m is the

number of degrees of freedom.

4m
X(s) = F, F(s) (1+bs) n

* n=1 mn (s l k-Xn)

where

*On = nth eigenvector of the non-expanded equation of motion

F(s) = transform of the non-expanded applied force vector

On = nth eigenvector of the expanded equation of motion

M = the expanded mass mar ix which is the coefficient matrix
associated with the S1/2 term in Eq (56), an early form
of the expanded system, Eq (57)

-T .- -
mn =OnM = a modal constant

* Since both open and closed systems have the form of an unforced

(homogeneous) system, the response is determined by examining the

impulse response. This also assumes that all initial conditions are

* zero. Therefore, F(s) = 1, vector of ones, because the impulse is

applied to all nodes. Also recall that b=O for this problem. Another

important point is that there are eight eigenvalues and eigenvectors

* from the expanded equation of motion but only two modes. The

eigenvectors of the expanded equation of motion are distinct, but the

mode shapes of physical deflection are not. If the eigenvectors had

* complex elements, we would have seen complex conjugate pairs of
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eigenvectors. This is shown in Bagley's and Torvik's example in

their paper (2:746).

By including the transform in the contour integration and using

the residue theorem from complex calculus, the transform can be

written in terms of a sum of the integrals for the other five

segments and a sum of the residues:

* .+ i 6 (k '"'

•j1 est X(s) ds = I f e s t X(s) ds + I bj
2 i J2 2 i k--2 Jj

where bj are the residues of the poles enclosed by the contour. The

residues can be shown to produce the exponential response related

to the sl-plane poles. Bagley (4:141-143) has shown that the

* integrals for segments 2, 4, and 6 are zero, when radii of 2 and 6

increase toward infinity and the radius of 4 approaches zero. He has

also shown that over long time the integrals for segments 3 and 5

* asymptotically approach t-n for t large, where ri > 1. It is in these

integrals that the effect of the poles not on the sl-plane becomes

included in the overall response. Only here are they included in the

* response calculation because of the form of X(s). As has been noted

earlier, this portion of the response correlates to the power-law

stress relaxation observed by Nutting (11) in deformed materials.

*0 69



dl d 2 d3 b
. -- __. _,-

'1 L 2 L 3

0 G (t) X-section
2L I A

C

th

0 Figure 8. Example 2. Fixed-Shear Rod Diagram

Geometry and Properties

L=--lm

b = h = 0.01m

p - 2796 kg/m 3

E = 6.894 x 1010 N/m2

Ac = 0.0001 m (area of contact between shear pad and rod)

th = 0.01 m

G(s) = Go + Gl 1S / 2 (shear modulus defined in the Laplace domain)

Go = 7.6 x 105 N/m2

G1 = 2.95 x 105 Nsl/ 2/m 2

ou.na. £ onditions and Ap.i.ed Forces

di = 0

c = shear stress applied by pad on node 3

u = control force applied at node 3
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Formulation -of Equation f Motion

The formulation follows like any other finite element

• formulation again with the added time-dependent modulus as in

problem 1. The basic equation of motion for an element is again

0Fd + kd = F" (39)

From Cook the elastic rod element mass and stiffness matrices are

6 11 2

-A E

The derivation of the general equation of motion by summation

of forces on nodes is important to review here, in order to

understand the inclusion of the shear force boundary condition in r.
0 Consider node 3, shown in Figure 9.

* 
+d3

F Rod FD'Alembert

* FNode 3 Shear

Figure 9. Free Body Diagram of Node 3 in Example 2
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A positive displacement of the node is assumed to stretch the rod,

like a spring, so the force on the node is in the negative direction.

Furthermore, the rod mass is lumped on the node, so there is inertia.

This creates the D'A!embert's force resisting the node motion.

Finally, the shear force created by the shear pad is assumed to be a

nodal point load. It too resists the positive displacement of node 3.

Hence, the equation of motion for node 3 is

m"3 d 3 - k 3d3 - Acr = 0
or

'3 d 3 + k 3 d 3 + AcT = 0

Of course, node 2 does not have the shear force, so its equation is

n 2 d 2 + k2 d2 = 0

The derivation of the shear stress, -, equation can be seen from

Figure 10.

d

th 7

Figure 10. Diagram for Shear Force Equation Derivation

Fr- small d3 compared to th. the small angle approximation for the
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0

shear strain, 7, applies, i.e. Y = tan Y = d3/th, and c = G(t) Y =

G(t)d 3 /th. 1 his stress is applied over the contact area, Ac.

Therefore, assembling the matrices and applying the boundary

conditions gives the elastic system equation of motion. Taking the
Laplace transform of the system and applying the correspondence

principle to the shear modulus in the shear pad force gives

• S2 M D(s) + Ke D(s) = - G(s)K'v D(s) + U(s) (60)

where

* (s) = { D2(s) I
U3(s) 

s U(s)I

M pAL F4 1]

6 -1 2]

keA 2 -1
-1 1 i

SAc '0]
Kv-[ 0 1 i

where the di values are displacements of the ith node. The

* displacement di was eliminated by the zero displacement boundary

condition. M is the assembled mass matrix, Ke is the assembled

matrix of stiffness corresponding to elastic elements (only the rods

* in this problem), and G(t)K'v is the assembled matrix of stiffness
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due to viscoelastic elements (the shear pad). Using the value of

G(s), the system equation of motion (EOM) is

[M s2+Gj Kvs' '2+ (Go iv+De)1(s)6(s) (EOM) (61)

• Values for the matrices in this problem are

M = 0.04660 [4 1 kg
11 21

Ke =6.894 x 106 [ 2 -1 ]N/n
-1 1

GoKv= 7600 0 0]N/m

0

Open _LQo. Response

The eigenvalue problem is once again set up in the sl/ 2 -plane
0 by defining X = S1/2 , where Xj and Oj are the jth eigenvalue and

eigenvector. This gives

* [ ! + GKvXj+(Gok~,+ke)Ij(s) (62)

which can be solved by the iteration scheme process described in

Example 1. The first four eigenvalues and eigenvectors are shown in

* Table IV.
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Table IV. First Four Open Loop Eigenvalue
* and Eigenvectors, Example 2

Eigu-nvalue Eigenvector

44.7541 ± 45.4687i (0.7162 ±0.0088i

1.0000

-44.-7542 ±44.0099i 10.6990 ±0.0084i
1.0000

1/2-Order S.ysjtem Formulation

The expansion into the 1/2-fractional state space follows

5from the first example:

00 0M]( S3 2D6(s) 0 32 06 s~(S)

12 0 0 ) s' D(s) 0 -M 0 0 ) ' sD(s)

-0M s 2 (S) -M 0 0 0 S 2D(S)

M00kI D(S) 1 0 0 0 K0  D(s)

0 0

U j(S) (3

00

where

K, = GK'v

0}
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Again let the expanded state vector be denoted by an underscore, i.e.

D(s). Note that U(s) is a scalar, because there is only one control

force in this example. This is rearranged to the appropriate

sl /2 _(s)= A D(s) + B U(s) form, where

0 0 0 M 0 0 -M" 0

• 2. MO0 0 0 0  (

LM 0 0 0 0

0- -M 0

0 0 M 0 0

0" 0 O (65)

U(s)= U(S)
To complete the system, it is assumed that all states are outputs

and that there is no feedforward to the output, i.e.
0

Y(s) = CD(s) + DU(s) (66)

where

C=8 x 8 identity mat ix
D=8 x 1 null (zero) mat x

* Ogen Loo Poles Via MATRIXx

The above system reduces to the eigenvalue problem for open

0 loop poles when the control vector, U(s), is set to zero. The

eigenvalues of the A matrix are then the open loop poles. The first
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eight eigenvalues are found by using the EIG function on A. These

are shown in Table V with the closed loop poles. Having already

found the firs- four by the iteration solution of the EOM, the second

set of four can be identified. Notice that the first four are the same

as found by the iteration method. Unfortunately, the mode shapes

(eigenvectors) for the second set must be found by modifying the

iterative solution of the EOM. The poles are shown graphically in

Figure 11.

100
3 80 0

60
40 0 VIBRATIONAL 1

20 0 VIBRATIONAL 2
I I I I I 0- I I I I I

- -80-60-40-2000 20 40 60 80 100 M RELAXATION1
100 4" 13 RELAXATION 2

* -60.f
D - 8 0 . 0

100

Figure 11. Example 2 Open Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

Closed L=. Poles lia MATRIXx

The system is posed in the appropriate form for the Riccati

-equation solver: 0D(t) Q A (t) + AB u( t) . There are two weighting
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matrices, because two cases are studied to show the effect of

varying weights. This is also required to get a significant change in

the pole locations - an example of the usefulness and arbitrariness

of weighting to get a desired pole structure. The inputs for the

Riccati function are

-2
A= AB

0 0 0 0 0

0 0 0 0 0
0 0 0 0 1

0 0 0 0 0

0 10~ 1 0 0 0

0 6 6 - 0

*0 0 0 10~ 9 0
0 0 0 0 1

NS= 8

MATRIXx then gives KC1 for RQ1 :

-0.3709 -0.4680 14.986 1205.8 731.18 -3083.4 -3.1086D+06 1.5543D+06

and the eigenvalues of the system, s' )D(s) = ( - - )(s) , are

found by applying EIG(,C to - BKC ). The mode to which each

closed loop pole corresponds is determined by marching through

• 78



increasing feedback gain and observing the evolution of the poles
0

from the open loop ones. The poles are shown in Table V.

MATRIXx gives K% for RQ 2 :

[-0.3667 -0.4311 3376.1 33925 1937 -3293 -2.6028D+08 1.3014D+08 

* The corresponding eigenvalues are also shown in Table V.

Table V. s 1/2-Plane Open and Closed Loop Poles for Example 2

Open Loop Closed Case 1 Closed Case 2
44.7541 ± 45.4687i 29.1442 ± 59.8026i 2.10 ± 631.92i

* 44.7542 ± 44.0099i -26.8325 ± 58.4049i -0.01 ± 9.89i

83.6001 ±84.0417i 64.9435 ± 95.0618i 54.06 ± 77.67i

-83.6000 ± 83.1657i -64.9542 ± 93.3355i -54.08 ± 77.71i

* The closed loop poles are shown in Figures 12 and 13.

100 T  0
* 80-

,60-.

40- * VIBRATIONAL 1
20- 0 VIBRATIONAL 2

-80-60-40-20D 20 40 60 80100 0 RELAXATION1

100 -40 RELAXATION 2

*60
-80 t

S -1000

0 Figure 12. Example 2 Case A Closed Loop Poles for Both Vibrational
and Relaxation Modes 1 and 2.
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800

800 T
600

40t0 VIBRATIONAL 1

200+O200o 
o 0 VIBRATIONAL 2

-60 -40 -20 0 20 40 060 0 RELAXATION1

-4000 D RELAXATION 2* -400

-600

-800k

Figure 13. Example 2 Case B Closed Loop Poles for Both Vibrational
and Relaxational Modes 1 and 2.

*~Comparison of Qpen_ and Cosed LQ . Pol

The stability measures based on the s1 /2 -plane open and

* closed Iooo poles are shown in Table VI, and the oscillatory motion

parameters are shown in Table VII.

080



Table VI. Stability Measures for Example 2

Mode Re(O) Re(C) Re(O)-Re(C) Open I/R Closed I/R

Case 1
1 44.7541 29.1442 15.6099 1.0160 2.0520

• -44.7542 -26.8325 -17.9217 0.9834 2.1766
2 83.6001 64.9435 18.6566 1.0053 1.4638

-83.6000 -64.9542 -18.6458 0.9948 1.4369

Case 2
* 1 44.7541 2.1 42.6541 1.0160 300.91

-44.7542 -0.01 -44.7442 0.9834 989.00
2 83.6001 54.06 29.5401 1.0053 1.4367

-83.6000 -54.08 -29.5200 0.9948 1.4369

Table VII. Example 2 Oscillatory Motion Parameters

EV s 1 / 2  EV s1  G Wd

Open Loop
44.7541 ± 45.4687i -64.473 ± 4069.8i 0.0158 4080.6 4069

83.6001 ± 84.0417i -74.031 ± 14052.7i 0.0053 14053.3 14052

* Closed Loop Case 1
29.1442 ± 59.8026i -2727.0 ± 3485.8i 0.6162 4425.7 3485

64.9435 ± 95.0618i -4819.1 ± 12342.3i 0.3637 13249.4 12342

Closed Loop Case 2
2.1000 ± 631.92i -399318 ± 2654.1i =1.0000 399318 2654

54.0600 ± 77.67i -3110.1 ± 8397.7i 0.3473 8955.1 8397

Both closed loop cases show improvement in stability over the open

loop case. Mode one damping ratio increases from 0.0158 to 0.6162

and approximately 1.0. Its natural frequency also increases from

4080.6 rad/sec to 4425.7 rad/sec and 399318 rad/sec, in cases A
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and B respectively. Although the damping ratio increases for Mode 2,

its natural frequency decreases. Interestingly, the damped

frequency for both modes decreases. Therefore, resonance occurs at

lower frequencies but at a reduced magnification factor,

G(6)1 = [l 4CO/Wn)2 + (2 CO/Wn) . In fact, for case 2 the system

is approximately critically damped, so there would be no resonance

for that mode. Mode 2, interestingly, has a better damped response

in case 1 than in case 2 because of a lower G(ico) and faster decrease

in the amplitude envelope. At resonance the larger C results in a

lower magnification factor, and the larger Wn product causes the

amplitude to die faster (e-Cnt) . Furthermore, case 1 has a better

separation of resonance frequencies than case 2, but neither has

better separation than the open loop. Evidently, minimizing ',,e

performance index does not mean that all stability parameturs will

improve. It is possible that controlling mode 1 is having an effect

on mode 2 such that the latter is being destabilized. Nevertheless,

even at resonance the system is displaying reduced motion.

Closed loop cases 1 and 2 demonstrate how weighting can

* significantly change results. In the modified example 1 equal

weighting was sufficient to create a significant dfference in the

pole structure, while here in example 2 weights of 106 and 109

* were reauired to make significant changes. Hence, the guideline for

weighting is the desired pole structure at the end. Furthermore,

various combinations of weights can result in similar pole

* structures. For exampie, weighting velocity at 106 and control at
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10-3 yields results similar to weighting velocity at 109. For a

guideline on weighting remember from example 1 that the velocity

and derivative of order 3/2 in feedback have strong effects on poles,

while the derivatives of lesser order have much less effect.

Therefore, to make a significant change in pole location, one should

weight the velocity or derivative of order 3/2 ; while weighting

position should only make small changes to the pole structure. Since

the control vector becomes full state feedback, weighting it has

mixed effects, because it includes all derivatives. However,

example 2 results indicate that the conrol vector effect is0
dominated by the higher order derivatives, which allowed weighting

velocity at 106 and control at 10-3 to yield results similar to

weighting velocity at 109.
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V. Conclusion

Quadratic control theory can be used to find an optimal

feedback control law at steady state conditions for a structure

incorporating a fractional calculus model of viscoelasticity.

Following linear regulator control theory, it has been shown that

under large time conditions the optimal control law is linear state

feedback, assuming an optimal time-varying gain matrix, K, which is

asymptotically constant for large time, for the minimized0
penrolmance index. A Riccati equation is created, such that a

fractional derivative system of order 1/n (n an integer) can be

represented by an equivalent first-order system in Riccati equation

solving routines. Therefore, current tools can be used to easily

solve problems of this kind. By expanding the structure's equation of

motion into a fractional state-space system, the control theory can

be applied to structures incorporating both passive and active

damping. This has been illustrated in two example problems.

The theory is limited to optimal gain matrices which are

asymptotically constant for large time. The optimal control , as

determined by linear regulator theory, is asymptotically linear

feedback as time tends to infinity. The evaluation of the Hamilton-

Jacobi-Bellman equation cannot produce a Riccati equation in

general time for a time-varying optimal gain because of coupling of

the gain matrix and the state vector due to fractional derivatives

acting on the control vector. Only when time tends to infinity can
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these derivatives be neglected. Then the optimal gain matrix can be

decoupled from the state vector, and an algebraic Riccati equation

can be identified for time large and for an optimal gain matrix which

is asymptotically constant for large time.

8

0
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VI. Recommendation for Further Work

The next step is to test the theory by experiment. Captain

* Kevin Klonoski's thesis research (16) has developed a prototype

sensor for fractional derivative motion, and a design useful for

experimentation should be developed. Response of a simple beam

• structure should then be predicted using the theory and compared to

experimental results using such a sensor to feed back the fractional

state vectors. This will also require the development of a discrete-

*time model and theory, if digital control is to be used. Thus,

verification requires:

1. Design of a fractional derivative sensor suitable for

* experiment instrumentation;

2. Development of a discrete-time version of the theory in

order to apply digital control (if desired);

* 3. Comparison of the predictions with experimental data for a

simple system.

Further theoretical research could examine the effect of

* optimal performance index forms other than that used in linear

regulatory theory. There is evidence that time delay in feedback

loops can cause exponential instability. Hence, further research

* cruld siudy the effect of time-delayed feedback on systems using

this theory.

Another possible area of interest is the investigation of the

• effect of this theory on modes over a large range of frequencies. I
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have only worked with the first and second modes and there are

significant differences in results between the two example

problems. Examination of the effect on a larger range of modes and

comparison with physical theory on how those higher modes should

be effected could give insight to the accuracy and utility of this

control model.

'0
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Appendix A: Regularly-Varying Functions

The presentation in this appendix is excerpted with minor

changes from Warhola (26).

"Regularly-varying" functions are those functions, f(t), for

which f(ct)/f(t) approaches a finite non-zero limit as t -, oo ;for

any such function, the limit is necessarily of the form cP as a

function of the parameter c, with . oo < p < oo (10). In this limit, f

has the asymptotic behavior:

f(ct), cP f(t), t -- O (A.1

For such a function, the notation P(f) = p indicates that p is the

"power" of f.

* If Eq (A.1) holds with p = 0, the function is "slowly-varying."

To suggest a logarithm, L(t) is used to denote any otherwise

unspecified slowly-varying function. Then

L(ct)-, L(t) , t --> 00 (A. 2)

Any regularly-varying function f(t) can be expressed in the form

f(t) = L(t) tP (A.3)

For many purposes, L can be treated as if it were a constant, even

though it may converge to zero or diverge to infinity. For examrple,

powers and products of regularly-varying functions are also

regularly-varying, with the obvious exponents. In particular, any

function which approaches a non-zero constant value is slowly-

varying.
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It the slope on a log-log graph of a differentiable function,

f(t), approaches a constant, p, for t -) oo,

d(!n f(t))/d(In t) = tf'(t)/f(t) - p, t -- oo (A.4)

then f is regularly-varying with P(f) = p. Additionally, f' is also

regularly-varying (unless f is merely slowly-varying), with

P(f') = p-i:

f' (t) , p f(t) /t , p 0 , t -- oo (A .5 a )

f' (t) 0 o f(t)/t) p =0 ,t 00o (A. 5b)

The exception for p = 0 occurs because when f is approaching a

constant, f' may be approaching zero much faster than 1/t.

On the contrary, when f is regularly-varying, its indefinite

integral F is always regularly-varying (10). When F diverges as

t -- 00

F(t) f t (, dc)  t f(t) ,p p(f)> -1 , t-oo
Jo p+1 (A.6)

0 just as if f were actually a power. When p<-I , the integral in

Eq (A.6) approaches a constant and the tail of the integral is

regularly-varying:

f (,) dcv t t( p P( < -1 ,t-*oo
fp+i I (A.7)

• The result analogous to Eq (A5.b) is
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t f(t) =o(F) , p =P(f) <-1 , t-* oo (A. 8)

A useful result is added here for the convolution of two

regularly-varying functions of a certain class. If f(t) and g(t) vanish

*for t < 0, and are regularly-varying at infinity with powers

P(f) = p > -1 and P(g) = q > -1, then

f f f( t-rc) g (t) d T- p! q! t f( t) g(t) , pq > -1 t

Jo (p-+q+l)! (A. 9)

where

p! t e-t dt p p> -1

00
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Appendix B: 4BEAMEVa.EXC. Li.sling

This is a listing of the MATRIXx command file (14:7-3 - 7-6)

called 4BEAMEVS.EXC. This file determines the open loop

* eigenvalues and eigenvectors for the first mode of a fourth-order

beam equation of motion which incorporates a fractional calculus

model of viscoelasticity of order 1/2, i.e. the fractional derivatives

* are of order 1/2.

The file is interactive. The user must supply the assembled

mass, elastic stiffness (Ko), and viscoelastic stiffness (Ki)

* matrices, as defined in Chapter IV. The user must also supply an

initial guess of the eigenvalue and eigenvector. The iteration

process is not automated, so the file will as'- which of four possible

* roots should it follow. Choose one set of signs to follow at a time

until the root converges within an acceptable error. Complete this

four times to get all four eigenvalues and eigenvectors. Answer the

query on which root to follow by RT(element number of proper root).

The vector of roots is called RT, so RT(#) specifies a specific

element.

* The eigenvalues and eigenvectors are written to file EV.DAT as

vector EVAL and matrix EVEC. Each column of EVEC is an

eigenvector.

DISPLAY('EIGENVALUENECTOR SOLN FOR 4TH ORDER BEAM THEORY)
INQUIRE N 'ENTER NUMBER OF DOF'
INQUIRE M 'ENTER ASSEMBLED CONSISTENT MASS MATRIX'
INQUIRE KO 'ENTFR ASSEMBLED KO MATRIX'
INQUIRE K1 'ENTER ASSEMBLED K1 MATRIX'
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EOK=KO;
El1K=K1;
INQUIRE Li 'ENTER INITIAL LAMBDA1 GUESS'
INQUIRE EVi 'ENTER INITIAL EIGENVECTORi GUESS'
K2=L1*E1K+EOK;
K21 NV=INV(K2);
EV1 ERR=1;
WHILE EV1 ERRi>5D-O6,....

LHS=K2INV*M*EV1;..
LHSMAX=LHS(1 );...

FOR 1=2:N, IF ABS(LH S(I))>ABS (LHS MAX), LHSMAX=LHS(I); END, END,-.
* EVT=LHS/LHSMAX,....

EVi ERR=ABS(EVT(1)-EV1 (1));...
FOR 1=2:N....

IF EVT(I)<>EV1 (I)....
ERR=ABS(EVT(I)-EV1 (I))....

* IF ERR>EV1 ERR,EV1 ERR=ERR;END,....
END,....

END....
IF EV1 ERR>5D-6, EV1 =EVT;END,....

ENDJ

* LHSMAX=LHSMAX
H=1 /LHSMAX;
P=[1 ,O,O,O,H];
RTBAS E=ROOTS(P)
FOR J=1:4,...

Li =RTBASE(J);...
CHOICE=O;...
OLDRLERR=; ;...
OLDIMERR=; ;...

* ITER=1,....
WHILE CHOICE<1,.

K2=L1 *E1 K+EOK; ...
K2INV=INV(K2); ...

EVi ERR=1 ;...

* WHILE EVi ERR>5D-6,....
LHS=K2INV*M*EV1 ;...

LHSMAX=LHS(1 );...

FOR 1=2:N, IF ABS(LHS(I))>ABS(LHS MAX),
LHSMAX=LHS(I);END, END,....

* EVT=LHS/LHSMAX;...
EVi ERR=ABS(EVT(1 )-EV1 (1));...
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FOR 1=2:N....
IF EVT(I)<>EV1 (1)....

* ERR=ABS(EVT(I)-EV1 (1));...
IF ERR>EVi ERR,EV1 ERR=ERR;END,....

END,.-
END....
IF EV1 ERR>5D-6, EVl =EVT;END,....

END,..
LHSMAX=LHSMAX,....
H=1 /LHSMAX;...
P=[i ,O,O,O,H];...

* RT=ROOTS(P),....
INQUIRE Li TEMP 'WHICH ROOT TO CONTINUE ON BRANCH?',...
ERRTEST=L1 TEMP-Li ;...

NEWRLERR=REAL(ERRTEST); ...
NEWIMERR=IMAG(ERRTEST); ...

* DRLERR=NEWRLERR-OLDRLERR,....
DIMERR=NEWIMERR-OLDIM ERR,-.
INQUIRE CHOICE 'CONTINUE=O STOP=i',...
OLDRLERR=NEWRLERR;...
OLDIMERR=NEWIMERR;...

* L1=LiTEMP,....
ITER=ITER+i,.

END....
EVAL(J)=L1 TEMP,...
FOR 1=1:N, EVEC(I,J)=EV1(1),END....
EN'D
PRINT('EV.DAT',EVAL)
PRINT('EV.DA1',EVEC)
RETURN
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Block 19 Abstract

The objective of this thesis is to develop a control law for structures incorporating
both passive damping via viscoelastic matcials modelled by a fractional calculus

stress-strain law and active damping by applied forces and torques. To achieve this,
quadratic optimal control theory is modified to accomodate systems with fractional
derivatives in the state vector. Specifically, linear regulator theory is modified.

The approach requires expanding the structure's equation of motion into a fractional

state-space system of order I/n, where n is an integer based on the viscoelastic
damping material constitutive law. This approach restricts the theory to materials
which have rational, fractional derivatives in their constitutive laws. An

equivalent first-order system is then formed and used to derive the optimal control

theory in linear regulator problems. The quadratic performance index used in linear
regulator theory is used, and equations similar to those derived for linear regulator
problems using firsz-order systems are developed. The optimal control law is asymp-

totically linear feedback of the state vector for time large. An equation which
defines the optimal gain matrix for the feedback is derived and is asymptotically

an algebraic Riccati equation for long time and for gain matrices which are

asymptotically constant for large time. Since an algebraic Riccati equation can be

defined, current solving routines can determine the asymptotically constant optimal
gain matrix for large time for the fractional state-space system.

In the general time case, no Riccati equation can be derived because of coupling
between the optimal gain matrix and the state vector due to fractional derivatives

of the control vector. Only when gain matrices are asymptotically constant for

time large and time is large, do they uncouple.

The theory ib illustrated by two examples. A simply-supported viscoelastic beam
with controllers illustrates the solution process in Example 1. The beam example

incorporates the fractional calculus viscoelastic behavior in a structure element,
while an axially deforming rod in Example 2 incorporates the behavior through
a viscoelastic shear force applied at a node by a damping pad. The example

equations of motion are numerically solved using the commercially-available

control analysis software package called MATRIXX.


